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Phases of  Fourier Coefficients directly from Crystal Diffraction Data  
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(Received 1 November 1947) 

It  is shown that  the application of Schwarz's and Cauchy's Inequalities to the formulas for cal- 
culating Fa** from, respectively, the density of scattering matter and the atomic positions in a 
crystal leads to relations between the magnitudes of some Fa~,'s and the signs or phases of others. 
These relations are in the form of inequalities, which vary with the symmetry of the crystal under 
consideration. A table of the simplest inequalities applicable to crystals possessing each of the 
simple symmetry elements is included. Examples of the inequalities arising from the presence of 
combinations of symmetry elements are presented. 

Introduction 

The density, p (x, y, z), of scattering mat ter  in a crystal  
can be expressed as the Fourier  series 

h=-  oo k= - oo l = - oo 

where x, y and z are the ' t r ime t r i c '  co-ordinates of a 
point in the crystal, V is the volume of a unit  cell of 
the crystal, and h, k and 1 are integers. In  all but  very 
special cases p (x, y, z) is real and therefore Fhk t is equal 
to the complex conjugate of F ~ ,  i.e. F ~ i - - F ~ k  z. The 
values of Fhkt can be calculated from p (x, y, z), in the 
usual way, from the formula: 

f ' f o f  1 F~,kt = V p (x, y, z)e-2.~lh~+k~+Zz)dxdydz. (2) 
o o 

Bragg (1929) has shown tha t  the Fhk~'S are related 
to the intensities, Ihk~, of X-rays diffracted by a crystal, 
according to the relation 

Ih~, =¢ (A, 0)I Fh~ I', (3) 

where the integers h, k and 1 are now the Miller indices 
of the crystal plane from which the diffracted beam can 
be said to have been 'reflected ', £7 is the glancing angle 
of reflexion (Bragg angle), ;t is the wave-length of the 
radiat ion being diffracted, and ¢ (A, 0) is a function, 
the form of which depends on the experimental  arrange- 
ments.  

Although other radiations can be treated by similar 
mathemat ica l  methods, it  will always be assumed in 
this paper tha t  X-radiat ion is used. p (x, y, z) then 
represents electron density (to a very close approxi- 
mation),  and the units of Fhk z are electrons per uni t  
cell. I t  is essential to the success of the following treat- 
ment  tha t  the exper imenta l ly  measured values of (Ih~)~ 
be converted to this absolute electron scale by  the use 
of a properly chosen (I) (~, 0). 

The Fourier  coefficient F ~  can be expressed thus 

where ~a~is the ' phase '  of F ~  expressed in revolutions. 
The phase a ~  cannot be found from the single experi- 

mental  number  Ihkz, but  I Fhkzl can. However, it  will 
be shown tha t  ah~z can often be limited to a narrow 
range of values---or even determined e x a c t l y - - b y  re- 
lations between Ihk z and other intensities, Ih.~v. The 
determinat ion of ahkz is the subject of this paper. 

The use of  Schwarz's Inequality 
The relation 

is known as Schwarz's Inequal i ty .  Applying this to 
(2) one obtains 

El:fifo J I Fh~-z i2 ~< V2 p (x, y, z) d x d y d z  

x p (x, y, z) le-2,"hx+k~+zz) l~ d x d y d z  
o o 

I f  of Of I z] 2 or I ~ k z  l2 < V 2 p (x, y, z) d x d y d  . 
o 

Since V d x d y d z  is the volume element belonging to the 
tr imetric co-ordinates x, y, z, this formula can be re- 
writ ten 

I F~kz l~ < g ~, (5) 
where Z is the total amount  of scattering material ,  i.e. 
the total  number  of electrons, in the unit  cell. In  
particular,  directly from (2), 

F000 -- Z. (6) 

The effect of  symmetry  

In case the crystal contains symmet ry  operations, the 
application of Schwarz's Inequal i ty  to formula (2) 
provides some information regarding the phases of 
some of the Fhkz's. For example,  suppose the crystal to 
contain a center of inversion, i ,  at  (0, 0, 0). Then 

p (x, y, z) =p  ( - x ,  - y ,  - z ) ,  

Fa~ z is real and (2) can be written: 

fo fo fo Fhkz= V p (x, y, z) cos 27r ( h x + k y + l z )  dxdydz .  
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Then, by Schwarz's Inequality, 

[f'f 'f ' V ~ (x, y, z)dxdyd 
0 0 0 

f l f l f l  x ½p (x, y, z) [1 + cos 27r (2hx + 2Icy + 2lz)] dxdydz 
J 0  J 0  J 0  

½F~a, ~,~). (7) or F ~  ~< Z (½Z + 

If  we define F a ~ / Z = ~  as the 'unitary crystal 
structure factor', (7) can be rewritten 

1 (8) 

This inequality is of use in finding the signs of some 
F2a, 2~, 2~ 's. Thus, if ~ is greater than ½, ~2~, ~, ~ must 
be positive; or, if ] ~ ,  ~, ~ I is ½ and ~ is larger than 
¼, then ~ ,  2~,. 2~ is positive, and so on. 

As a second example, suppose the crystal contains 
a two-fold rotational axis of symmetry, 2, along the 
y axis. In this case p (x, y, z) = p ( - x, y, - z) and 

f l  f l / ' ~  

The application of relation (4) then leads to 

½+ (9) 

This relation is somewhat more powerful than (8), since 
all the observed I Fa~l~"s of constant h and 1 but 
various/o's can be used to determine the sign of Fga, o.2~. 
(In this case Fa0z is a reM number.) 

Other symmetry elements yield other inequalities 
by the use of very similar methods. In  each case the 
integrand in (2) is simplified by the use of the symmetry 
element under discussion and Schwarz's Inequality 
applied. Table 1 lists the inequalities which arise from 
the presence of each of the simple symmetry elements. 

I t  is to be noted that  so far only the presence of 
glide planes or screw axes leads to inequalities that  
can prove the sign of an F to be negative. This situation 
is not as serious as might appear--the 'relations 
limiting the phases of odd orders' (to be discussed later) 
can also be used to prove signs of F 's  to be negative, 
even if no glide planes or screw axes are present. 

The effect of atomic shape 
Crystals are composed of atoms whose electron clouds 
provide the scattering matter, the density of which is 
given by equation (1). I t  is well known that  ff the 
electron clouds of the atoms are assumed spherical, 
equation (2) can be rewritten 

N 
Fa~-- ~ f,~-u=~(a~i+~ui+~p, (10) 

i = 1  

where N is the total number of atoms in the unit cell, 
x~, y~, z~ are the (trimetric) co-ordinates of the center of 
the j th  atom, and f~---the 'atomic structure factor' of 
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the j th  atom--is  given by 

p~(x, y, z) e -~'~(~'~+k~+z~ dxdydz, 
~= j - - o ~ j - - c o j - - o o  

where pj(x, y, z) is the electron density of the j th  atom 
refe~ed to an origin at its center. I t  appears that  fj 
depends on h, k and l, but actually this dependence is 
such that  fi is a function of (sin 0)/)l only. Fig. 1 shows 
the dependence off~/Z~on (sin 0)/A, where Z~ is the atomic 
number, or number of electrons, of the j th  atom. I t  is 
seen that  (except for hydrogen with Zj = 1) the curves 
in Fig. 1 all lie fairly close together--at  least to the 
accuracy with which the intensities of diffracted X-ray 
beams are usually^ measured. This sugg~ts that  the 
approximation Z~f-f~ might be useful, f is then the 
same function of (sin O)/A for every atom in the crystal 
and will be called' the unitary atomic structure factor'.  

N 

Since Z Zj= Z, 
t=:1 

N 
one obtains • fi=]Z 

t--1 
N 

or / -  (l/Z) Z ft. (11) 
1=1 

h 

From this relation f can be calculated, as a function of 
(sin O)/X, for any crystal of interest. With this assump- 
tion, one can write 

^ N  

t=1  

or, defining Al~ak~=Fakz/Zf, (12) 

where A~a~z is a 'unitary crystal structure factor 
assuming atoms',  and 

z#g=n~, (13) 

where n~ is the fraction of the electrons in the unit cell 
on the j th  atom, one can write 

N 
A Paz~ = Z n~ e'-9"i (axj +k~j +z~p " (14) 

i=1  

Cauchy's Inequality states that  

I:i=~la, bi12<(t=~11ai[2)(i=~l[b,[9-), (15) 

where the a/s  and b/s are any real or complex numbers; 
it is the stem from which Schwarz's Inequality arose. 
Applying (15) to (14) one obtains 

' Al~hk, '9 ~ C~= n,) C~=,n" e-2"'(h'J+~'+"~) '~ ) 

N 

or, by noting that  ~ n~- 1, 
t = 1  

I ~Fa~l~<~ 1. (16) 

This is the exact analogue of the first relation in Table 1. 
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• 20 - -  ~-- - 
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• 10 -20 • 30 "40 "50 "60 "70 "80 "90 1"00 1-10 

(sin 8)/,X 

Fig. 1. Curves off/Z¢ as flmctions of (sin 0)/h. The numbers  in parentheses are the valued of the atomic number ,  Z~.. 

Symbol Equivalent  
of axis symbol Co-ordinates 

1 - -  Triclinic 

i ~ Triclinic 

2 ~ Monoclinic 

m Monoclinic 

2~ - -  Monoclinie 

3 - -  Hexagonal 

,3 3 + i Hexagonal 

3t ~ Hexagonal 

4 - -  Tetragonal 

~ Tetragonal 

4~ ~ Tetragonal 

4z - -  Tetragonal 

6 ~ Hexagonal 

3/m Hexagonal 

6~ ~ Hexagonal 

62 ~ Hexagonal  

6a ~ Hexagonal  

T a b l e  1. The inequalities arising from the various elements of symmetry 

(All symmet ry  elements pass through the origin.) 

a Monoelinic 

Inequali ty 

]Phkt ]2~ 1 

P~,,, < ½ + ½/%,. ~,,. ~ 

I lOakz [~'~<.~+½ (-- 1)k.tOU. o.~z 

P~,~,  ~ < ~ + t - ~ , .  2~. , . , ~  + t?~,. ~ . , .  2~ + ½&,-~. ~+2~.,.o 

Phk~ 12 < ¼ + ¼P=.,k. o + ½Ph_k.h+,, o 

PhkZ 1"<¼+¼i%,.~.O+ ½ I ?,,_~.,,+,~.2Z I COS 2~'~h-k.h+~, ,.,~ 

f~,t 12<¼+¼ ( -  1)t gh.2k.o+ ½ (cos 2~-¼z) P^-k.,,+~.o 

?hkZ 12~¼+¼ JOah.a.o+ ½ (-- 1)' JC'h-k.h+k.o 

~,~,~ 12<~+~ P~,.2~.,.o+ ~P~_~.~+,~.,.o + tF~.~.,, o 

+ ½ [ P z-l'.~+2r.,.2L Ices 2~.a~_~.~+2~.,.z ~ 

I ~ , ~  I'<~+~ ( -  1)~ ~ . ~ . , . o + t  (oos 2 .  AL) -~-~.~2~.,.o 
+ ~, (cos 2,7 ~L) -Pa. ~,., o 

I ~ , ~  I '< ~+ ~-~.2~,.,o+ ½ (cos 2, tL) ~ -~ .  ~+~.,.0 
+ ½ (cos 2,~ ~Z) F~, ~, .,o 

I ~.~,~ 12< ~+ ~ ( -  ~)~ ~ . , ~ . , . o  + t ~-~.~+~., .0 
, A ( - n ) ~ . , , . . . o  

I%,~, 1"<~+½ ( -  1)" %,,,~o 
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I f  the crystal possesses symmetry  elements, more 
restrictive relations can be derived, just  as in the more 
general case. For instance, suppose the crystal to have 
a mirror plane, m, in the x, z plane. Then there is an 
atom at x, - y ,  z for every atom at x, y, z. This gives 
formula (14) the form 

½N 
aPh~ ~ = 2 ~ n~e-2"i(~+t~P cos 27r ky~. 

i = 1  

On applying Cauchy's Inequality, one obtains 

i N  1 i N  kY¢) 1 
/ 

or 1~1~<-½+½ a~o,2~,0, (17) 

in exact analogy with the fourth entry in Table 1. 
Further  investigation shows tha t  every relation in 

the table, as well as every other one derived similarly 
from the symmetry  elements of a crystal, has the same 
form for A~a~t as for ~h~. I t  is therefore unnecessary 
to retain the superscript A. I t  is only necessary to 
note tha t  the values of ~a~ can be made larger by 
dividing each one by the appropriate value of f, and 
tha t  the new, larger values provide much stronger 
inequalities--indeed, strong enough to be useful in 
practice. 

The use of f i n  calculating ~a~from Fa~t, as in formula 
(12), may be interpreted thus: The actual crystal con- 
rains atoms whose electron clouds are rather spread  
out; division of the amplitudes l~a~t = F a~dZ  by f corre- 
sponds to correcting the observed F ' s  to those of 
a crystal in which all the electrons of each atom are 
concentrated at  its center. This correction can be made 
exactly only if the atoms in a crystal are all spherical 
and have the same f i Z z .  This is never really true, but  
in practical cases it turns out to be a very good approxi- 

2k  

marion. The use o f f  is so valuable in strengthening the 
inequalities described here as to be almost essential. 

In  cases of crystals with large unit cells which contain 
many atoms it may be possible to divide the ~a~z's by 
numbers which decrease much more rapidly with in- 
creasing (sin 0)/A than do the values off. These numbers 
should correspond t o '  un i ta ry '  structure factors of such 
atomic aggregates as can reasonably be assumed to be 
present in the crystal and to have approximate spherical 
symmetry.  This procedure probably can be used only 
if the resolution of the Fourier series representing the 
crystal is insufficient to separate these aggregates into 
their constituent atoms. Such lack of resolution is 
quite usual in crystals with very large unit cells--the 
proteins provide several examples. The inequalities for 
these crystals can probably be considerably streng- 
thened by such a procedure without seriously en- 
dangering their accuracy. 

Relations limiting the phases of  odd orders 

All the inequalities derived so far limit the phases of 
only certain special Fourier coefficients. The inequality 

for the center of inversion, for example, so far provides 
limits on the signs of only the F~,  2k,2~'s--those with 
all indices even. One can, however, obtain information 
on the phases of other coefficients. 

First, consider a crystal with no symmetry.  In this 
case N 

~hkl = ~ n~-2ni(axJ+kYJ+lzJ ). 
i = 1  

Two different ~hk~'S may be added, or subtracted, to 
give 

N 
= ~ n~e-2,mh'.j+k'~j+r~j~ {e-2.~,h-h') ~j+(~-k'~j+a-v~l + 1}. 

J=~ (18) 

Cauchy's Inequali ty applied to this expression leads 
to 

I tL~_ P~,~, I ~ 
~<2_+2[l~h_W.k_r,t_ v] COS21r~h_h, k_r,t_t,. (19) 

Further  rearrangement brings one to the expression 

II tL ,  I. I P~,~,~,I cos 2 .  ( ~ - ~ , ~ , )  
- I  t'~_~,.~_~,,_,, I cos 2~ (~,~_~, ~-~,.,-,,) I 

< 1 - ~  (l_~h,~l~+ I ~,~,12). (20) 

This can be used to limit the ranges of .~hkz and 
ah-h', k-r,~-V if the value of ~h'rt" is assumed. This is 
allowed, since the choice of origin is arbi t rary in an 
asymmetric crystal. 

An interesting special case of (20) arises by putt ing 
h' = - h, k '  = - k ,  l' = - 1. Since ~i~i = - ~ t  and 
I ~ 1  = I ~L~I, one obtains 

II ~,~, I ~ cos 2~ (2~h~) 
- I ~ . ~ k . 2 ,  I cos 2~ ,~ . ,~ .~  I -< 1 -  I $'~,~ 12. (2o3 

I t  is always possible to choose the origin so as to make 
~a~t vanish. Choosing the origin in this way, we have, 
by simple rearrangements, 

I ~  I ~ 4 ½ (1 + I ~.h, ~.z~, 2z I cos 2,~.~,,.2~). (20-) 

This inequality shows that ,  for any crystal, 

More useful expressions are obtained in case the 
crystal possesses symmetry.  For instance, the simple 
case of a center of inversion leads to 

12~t~ ,~ ,~  , -  (t~+~ ,, ~+~.~+~, + 2~_~,. ~-~.,-~,) I 
~<l+[(~2~,2~et+~2~,~.~,2,,)-(~,,t+t~,rt ,) ,  (21) 

o r  

~< 1 +2~+~, ~+~,t+rl~_~, ~_~.,_v- (1~,~+ t~,~,), (22) 
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depending on the choice of aj in Cauchy's Inequality, 
(15). Formulas (21) and (22) can be used to find the 
signs of ~ ' s  that  do not yield to the simpler inequali- 
ties of Table 1, many of which can prove an ~ to be 
positive, but not the reverse. In such cases, (21) and 
(22) can prove some of the ~ 's  to be negative. 

Another very important  use of (21) and (22) is in 
limiting the signs of ~k , ' s  with h, k, 1 not all even. 
This is done as follows: Suppose that  the signs of the 
Pe~,e~.~'s have been found--from the inequalities in 
Table 1 or from (21) and (22)--then choose h, k, 1 and 
h', k', l' in (21) or (22) such that  h+h',  k+k ' ,  l+l '  are 
all even, but h, k, l, h', k', l' are not. Then, in principle, 
the signs of all the terms in (21) and (22), except those 
of ~ and ~,, , , .  are known. If  the sign of one of these 
is assumed, tha t  of the other follows. This knowledge 
then allows the signs of other ~ ' s  to be found. This 
procedure could lead to determinations of the signs 
of all the ~ , ' s ,  except for a certain ambiguity in the 
signs of those that  have h, k and 1 not all even, since 
these signs depend on the assumption just mentioned. 
This ambiguity is due to the eight possible choices of 
origin in a crystal possessing a center of symmetry,  for 
between each two identical centers is another center 
not identical with the first kind. The structure can be 
described in terms of a Fourier series about either 
kind of center and the two series will have the same 
F~.~, ~, ~.~'s, but  will have opposite signs for some other 
F 's .  I t  is interesting that  this ambiguity in choice of 
origin corresponds to an ambiguity in the signs of just 
the proper sets of F 's .  

The addition and subtraction of two F ' s  yields 
extremely powerful inequalities when other symmetry 
elements than the center are used. Examples of some 
of these will be presented later in this paper. 

Combinations of symmetry elements 

New and important  inequalities can be derived for 
crystals having more than one symmetry element. For 
instance, consider the simple case of a two-fold axis 
and a mirror plane normal to it, such as occurs in the 
space group C~a-P2/m. The co-ordinates of the 
general atomic position can be taken as 

x, y, z; x, 9, z; "~, y, 5; x, y, z. 

Accordingly, the formula f o r / ~  is 

~N 
~ = 4 ~] n~ cos 2~rky~ cos 2~r (hx~ + lz¢). (23) 

i = 1  

Cauchy's Inequali ty applied to this expression can 
yield two different results, depending on whether aj in 
formula (15) is taken to be n~. or n] cos 2~r ky~.. These two 
choices of a~ yield, respectively, 

~ < ¼ ( ~  +-~0, ~, o + ~h,  o, ~ + ~2~. ~, ~) (24) 

and ~ ¼ (1 +/~0 ~, 0) (1 + ~n,0,~). (25) 

Formula (25) can also be written 

2 .< P02~0+P~h +~0, 0P~h,0~) (26) ~ - ~ 1 (  1 +  . . ,o,2z 2~, • 

Comparing (24) and (26), one sees that  ~2h,~ 2z and 
the product ~0,2k, 0"Peh 0,21 play analogous roles in 
these two inequalities. These two numbers are not 
equal, in general, and one or the other of these in- 
equalities is the more powerful, depending on circum- 
stances. Quite commonly it happens tha t  such 
formulas as (24) and (25) provide sign determinations 
when those derived from a single symmetry element do 
not. This can arise from one of the following situations: 
(a) the signs of some of the terms of the right sides of 
(24) and (25) are already known; or (b) one of ~0,~k,0 
or-P~h, o, 2~ is zero or small, the other then being subject 
to a very powerful inequality in (25), equivalent to 
dividing by two the right-hand side of the inequality 
for one symmetry element alone (cf. formulas (9) and 
(17)). 

I f  Cauchy's Inequality is applied to the sums and 
differences of two Phkz'S belonging to a crystal of 
symmetry C~, -P2 /m ,  the following inequality may 
be obtained (for the case of a~=n~) 

( ~  + _P~,~,~,)~ < k {2 + ~0, ~, 0 + ~2~, 0, ~ + P~.  ~, ~ 

+ ~o. ~ ' .  o + - ~ ' .  o ,~" + P~h' ~-'. ~, 

_+ 2 [Ph_ h'. ~-k', z-t' + P~-~ , .  ~+k,.z-~, 

+ ~h+h', k-~',~+V + Ph+h', k+k',Z+V]}. (27) 

This relation can be used as a tool more powerful than 
(24) or (25) for finding the negative _~'s and the ~ ' s  
with hkl not all even. Its increased power arises from 
the use in its derivation of more symmetry elements 
than the center alone. 

Each space-group symmetry can be made to yield 
a set of characteristic inequalities, and they become 
more powerful as the number of symmetry elements 
increases. In illustration of this increase in power, we 
present some of the inequalities which can be derived 
for the space group D ~ -  Pnnm. This space group pro- 
vides the general atomic positions: 

x, y, z; x, y, z; ½+x, ½ - y ,  ½-z ;  ½ - x ,  ½+y, ½-z ;  

x, y, z; x, y, 5; ½-x ,  ½+y, ½+z; ½+x, ½ - y ,  ½+z. 

Accordingly, the uni tary structure factor for the 
space group is 

~N 
zShk ~ = 8 ~ n~ cos 2~rhx~ cos 2r~ky~ cos 2~rlz~, 

i=1  

if h + k + 1 is even, 

o r  
~N 

PhkZ = -- 8 ~] nj sin 2~rkxj sin 2~.ky~ cos 2~rlz~, 
i=1 

if h + k + l  is odd. 
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Four different inequalities can then be derived from 
these formulas, depending on the choice of a in 
(15). These are listed below: 

x (P~h.o.o+Po.2k.o+P~,,.o.~+Po.2,~.~)}, (28) 

P~,,, .<-18-{1 +.~o. o.~,} { I  + &.,, .o,~, o + ( -1 )h÷ , ,÷ ,  

x (P2n, o,o 4- ~o,2k o)}, (29) 

P h ,  < ~ {1 + ( -  l)~+~+, ~o 2~, o} { 1 +_~o, o, ~ + ( -  1) ~+~+, 

x (~2h, o,o 4- P2h, 0,2z)}, (30) 

~k,~< ~{1 4 - ( 1 )  h+k+'~ ~ fl-t-Po o 2,4- (-- 1) h+k+z ~" 2 h ,  0 , 0 1  ( , , 

x (~o, 2~,o + Bo, 2~,~.,)}. (31) 

In addition to these, there are a number of valuable 
'sum and difference' relations for Pnnm; among them 
the following: 

(~,,k, +_ ~,,.~.,.)~ -< ~(2  + ~o,o, 2, + ~o.o,2,. + ~2,,, 2,~, o 

+ ( -  1),,÷,~÷, (-~ h, o, o + ~o, ~., o + ~ , , .  o. ~, + ~o, ~,~, ~,) 
+ ( -  1),,'÷,~'÷,' #,,~.. o. o + ~o. 2~. o + ~,,.. o.~,. + ~o. ~k..~,.) 
_ 2 [~,,÷,,.. k÷,~.,,÷,. + $',,÷,~.. k÷~.,-,. + ~h_,,.. k-~, ,÷,. 

+ ~h-h'. ~-~.,-," + ( -- 1)'~'+k'+" (~,,+,~..,~_~..,+,. 

+ ~h+ h..,~-~.,-,. + $'h-,,.. k+ ~.,+,. + -g,-,,.. ,~+~'.,-,')]}, 
(32) 

(~,,k, ___ ~,,.,~,)~ -< -~ {2 + 2~'o, o,2, + ~2,,., ~,~.. o +-~2,,, 2,~. o 
4- P2h, 2~.2/+ P2h',2k',21 

+ ( -  1),~÷,~÷, #2,,. o. o + ~o. 2,~. o + P~,,.o.2, + ~o. 2,~.2,) 

+ ( -  I),,'÷,~'÷, (P~,,.. o. o + ~o..... o + &,,.,  0.2, + ~o.,~, ~,) 
+ 2 [~h-~'.,~-k'.o + ~÷,, ' .  ~÷~'.o + ~÷~'.,~÷~'. ~, 

4- l~h- h', k--k', 2~ 

+ ( -  I) ~'+~'+z (.~_~,, ~+k,,o + ~+~'. ~-~', o 
4- ~ -~ , ,  ~+~,,~., 4- ~+~' ,  k-k' 2z)]}, (33) 

( ~ ,  + ~.~,)~ < ~{l + ~o,o,2,}{2 + $'~,2k, o+ &.~.,2~,o 
4- ( -  I) ~+~+' (-~2~,, o,o 4- Po, 2~, o)4- (-- 1) t~'+~'+z 

× (P~,,..o.o +-~o,~,~..o) 
+ 2 [P~+~,, k+~,,o 4- P~_~,, ~_~¢,o 4- (-- 1) ~'+~'+z 

x (Ph-~',,+w,o +-~+~,', k-~',o)]}. (34) 
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From these can be derived others by  giving special 
values to the indices. For  instance, by  put t ing  1--0 in 
(33) or (34), one obtains" 

(Pa~0 -+ ~a'~0) 2 ~< ~ {2 4- ~ga. 2k, 0 4- ~2h', ~.k'. o 4- ( -  1)a+k 

x (&h,o,o + ~o, ~,~, o) + ( -  1),,'+,~' #2,,.. o, o + Po, 2,,. o) 

_+_ 2 [Ph-h'. ~-~. o + P,,+,,-.,~+~'. o + (--  I)  h'+~' 

x (P~_~.. ~÷~.o + P~÷~., ~_~,o)]}. (35) 

Also, by  lett ing h = h', k = k', 1 = l' in (32) and  (34), one 
obtains, respectively, (28) and (29). 

The space group P n n m  can lead to an immense 
number  of inequa l i t i e s~ the  authors  have derived 
about  t h i r t y ~ w h i c h  differ in the special values of 
h, k, l and h', k', l' used in their  derivation,  and in 
the way in which %-is chosen in (15). In  addit ion 
to these, the  inequalities derived from any  subgroup 
of P n n m  are also applicable to crystals with this space 
group. Thus  it  seems out  of place to a t t e m p t  an ex- 
haust ive list of inequalities for even this one space 
group in the present  paper.  For  any  part icular  space 
group, a set of inequalities can be derived as needed. 
Different members  of this set are useful in sign (or 
phase) determinat ions for different Phkz'S. The process 
is laborious, bu t  not  difficult; its essentials have been 
outlined in the early par ts  of this paper. 

Application of the inequalities 
Gillis (1948) has presented a beautiful  example of 

the usefulness of formulas (8) and (22) in finding the 
signs of the  ~a0~'s for oxalic acid dihydrate ,  using the 
da ta  of Rober tson & Woodward (1936). This work 
il lustrates in detail  the  process of finding the signs of 
F ' s  in an actual  case. The authors  of this paper  are 
applying the inequalities in the  course of an investi- 
gation into the s t ructure  of crystalline dekaborane,  
BloH14. I t  is hoped to publish the results of this work 
in the near future,  at  which t ime the details of the sign 
determinat ions involved will be presented. 
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