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Phases of Fourier Coefficients directly from Crystal Diffraction Data

By D. HARKER aND J. S. KASPER
Research Laboratory, General Electric Co., Schenectady, N.Y., U.S.A.

(Received 1 November 1947)

It is shown that the application of Schwarz’s and Cauchy’s Inequalities to the formulas for cal-
culating F,;, from, respectively, the density of scattering matter and the atomic positions in a
crystal leads to relations between the magnitudes of some Fyi’s and the signs or phases of others.
These relations are in the form of inequalities, which vary with the symmetry of the crystal under
consideration. A table of the simplest inequalities applicable to crystals possessing each of the
simple symmetry elements is included. Examples of the inequalities arising from the presence of
combinations of symmetry elements are presented.

Introduction

The density, p (z,y,2), of scattering matter in a crystal
can be expressed as the Fourier series

e} @ oo
P@y2)=(11V) T X T Fyeritetivia, (1)
h=—wk=-o0l=-w®

where z, y and z are the ‘trimetric’ co-ordinates of a
point in the crystal, V is the volume of a unit cell of
the crystal, and A, k and [ are integers. In all but very
special cases p (2, y, z) is real and therefore F},,, is equal
to the complex conjugate of Fy;;, i.e. Fyzy=F7,,. The
values of Fj;, can be calculated from p (2, y, z), in the
usual way, from the formula:

1 1 1
Fhlcl= VJ f J P (.’t, Y, 2)8‘2”i(h‘”+"y+lz)dxdydz. (2)
0JoJo

Bragg (1929) has shown that the F,,,’s are related
to the intensities, I,,,, of X-raysdiffracted by a crystal,
according to the relation

Ihkz=‘D (/\: 9) ’ Fhkl Iz’ (3)

where the integers %, k and [ are now the Miller indices
of the crystal plane from which the diffracted beam can
be said to have been ‘reflected’, 6 is the glancing angle
of reflexion (Bragg angle), A is the wave-length of the
radiation being diffracted, and ® (A, 0) is a function,
the form of which depends on the experimental arrange-
ments.

Although other radiations can be treated by similar
mathematical methods, it will always be assumed in
this paper that X-.radiation is used. p(z, y, z) then
represents electron density (to a very close approxi-
mation), and the units of F,,, are electrons per unit
cell. It is essential to the success of the following treat-
ment that the experimentally measured values of (/ i)t
be converted to this absolute electron scale by the use
of a properly chosen @ (A, 6).

The Fourier coefficient F,,,; can be expressed thus

Fyq=e o | F,,, [,

where a,;,is the ‘ phase’ of F,,,expressed in revolutions.
The phase «y, cannot be found from the single experi-

mental number 7, but | F,, | can. However, it will
be shown that «,,, can often be limited to a narrow
range of values—or even determined exactly—by re-
lations between I,,, and other intensities, 7 wir- The
determination of a,,, is the subject of this paper.

The use of Schwarz’s Inequality
The relation

ffgdvrs( Ifl“df)( lo]edr) @

is known as Schwarz’s Inequality. Applying this to
(2) one obtains

1,1 r1
| Fu <12 [ f f f o(r,9.2) dxdydz]
0J0J0o
1,1 1
x I:f f f p(z,9,2)| e—2ni(hz+ky+lz)|2dxdydz]
0J0JO
1,1 p1 2
or |'FhkllZSV2[f J f P(xs ?/»Z)dxdydz:l .
0J0JO

Since Vdxdydz is the volume element belonging to the
trimetric co-ordinates x, Y, 2, this formula can be re-

written thkz|2< 7, 5)

where Z is the total amount of scattering material, i.e.
the total number of electrons, in the unit cell. In
particular, directly from (2),

F 000 = 4 (6)

The effect of symmetry

In case the crystal contains symmetry operations, the
application of Schwarz’s Inequality to formula (2)
provides some information regarding the phases of
some of the F,’s. For example, suppose the crystal to
contain a center of inversion, T, at (0, 0, 0). Then

P,y 2)=p(—z, -Y, —z),
Fyyis real and (2) can be written:

101 p1
Fru= Vfo J;f p (%, Y, 2) cos 2x (hx +ky +1z) drdydz.
0
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Then, by Schwarz’s Inequality,

111
Fra<V? [J. f f plx,y,2) dxdydz]
0JoJo

1011
X,[ J f 1o (x,y,2) [1 +cos 2w (2hx + 2ky +21z)]dxdydz
0oJoJo

()

If we define F,,/Z=F,, as the ‘unitary ecrystal
structure factor’, (7) can be rewritten

20 < 3+ 3P o 01 (8)

This inequality is of use in finding the signs of some
Fyp o oS- Thus, if 3, is greater than 1, B,y 0z, o st
be positive; or, if | Fyp or, 21| is § and 2, is larger than
1, then Fy, ,; 5, is positive, and so on.

As a second example, suppose the crystal contains
a two-fold rotational axis of symmetry, 2, along the
y axis. In this case p(z, y,2)=p(—%, ¥, —z)and

or Fiu<Z(3Z+%F s, 2k, 21)

1p11
Fou= VJ f J p (x,y,2) e~2m%Y cos 2m (ha + Iz) dwdy dz.
0JoJo

The application of relation (4) then leads to
| B |2< 3+ 3Fon 0,1 9)

This relation is somewhat more powerful than (8), since
all the observed |Fy|¥s of constant h and ! but
various &’s can be used to determine the sign of Fyp, ¢,01-
(In this case Fy; is a real number.)

Other symmetry elements yield other inequalities
by the use of very similar methods. In each case the
integrand in (2) is simplified by the use of the symmetry
element under discussion and Schwarz’s Inequality
applied. Table 1 lists the inequalities which arise from
the presence of each of the simple symmetry elements.

It is to be noted that so far only the presence of
glide planes or screw axes leads to inequalities that
can prove the sign of an F to be negative. This situation
is not as serious as might appear—the ‘relations
limiting the phases of odd orders’ (to be discussed later)
can also be used to prove signs of F’s to be negative,
even if no glide planes or screw axes are present.

The effect of atomic shape
Crystals are composed of atoms whose electron clouds
provide the scattering matter, the density of which is
given by equation (1). It is well known that if the
electron clouds of the atoms are assumed spherical,
equation (2) can be rewritten

N
Fhkl= z f’e—2ﬂi(h¢j+kyj+lz]'), (10)
j=1

where N is the total number of atoms in the unit cell,

x;, ¥;» 2; are the (trimetric) co-ordinates of the center of
the jth atom, and f;—the ‘atomic structure factor’ of

the jth atom—is given by

(7 7 7 by, g, 2) etmitarivan dedyde,
Ej - Pi\T, Y Y
—0) —w0) -

where p;(z, ¥, z) is the electron density of the jth atom
referred to an origin at its center. It appears that f;
depends on %, k and 1, but actually this dependence is
such that f; is a function of (sin 6)/A only. Fig. 1 shows
thedependence of f;/ Z,on (sin )/A, where Z;is theatomic
number, or number of electrons, of the jth atom. It is
seen that (except for hydrogen with Z;=1) the curves
in Fig. 1 all lie fairly close together—at least to the
accuracy with which the intensities of diffracted X-ray
beams are usua,]lyA measured. This suggests that the
approximation Z;f=f; might be useful. f is then the
same function of (sin )/A for every atom in the crystal
and will be called ‘ the unitary atomic structure factor’.

N
Since S, Z;=2,
§=1
N -
one obtains S fi=fZ
i=1
. N
or f=wm 2 4 a1

From this relation f can be calculated, as a function of
(sin 8)/A, for any crystal of interest. With this assump-
tion, one can write

N
A
Fhkl =szl Z’_e—2m( h$j+kyj+lzj'),

A
4 th=Fhkl/Zf’
where 4, is a ‘unitary crystal structure factor
assuming atoms’, and
Z,|Z=n,, (13)
where n; is the fraction of the electrons in the unit cell
on the jth atom, one can write

or, defining (12)

N
app =3 n et (htviHle), (14)
i=1
Cauchy’s Inequality states that
N s (N N
3 asb; s(z lajlz)(z Ib;'|2)’ (15)
i=1 j=1 i=1

where the ¢;'s and b;/’s are any real or complex numbers;
it is the stem from which Schwarz’s Inequality arose.
Applying (15) to (14) one obtains

N N
| 4B |2< (:'21 n,) (E]In S| e (hejtkyjHzj) |2)

N
or, by noting that ¥ n;=1,
j=1

| 4Fua |2 < 1. (16)
This is the exact analogue of the first relation in Table 1.
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Fig. 1. Curves of f;/Z, as functions of (sin 0)/A. The numbers in parentheses are the values of the atomic number, Z;.

Table 1. The inequalities arising from the various elements of symmetry

(All symmetry elements pass through the origin.)

Symbol Equivalent
of axis symbol Co-ordinates Inequality
1 — Triclinic | B 21
i — Triclinic Bra<t+4F0 e
2 — Monoclinic | Bt 12< 3+ P A
3 m Monoclinic | By [P<$+ 3P0 .0
2, — Monoclinic | B 1B<t+3 (=¥ Fy 00
—_ Hexagonal | ng*z |2S§+§‘ | FE'K,H'HK.t.o | cos 2770‘1171(. H+2K, %,0
3 3+1 Hexagonal F?Ix*LSQ"f"&Fw.zx.t,u'f'ipy, Eeo+3Fg g, HY2K, %,0
3, — Hexagonal | Faxu. 2<3+%} Fu—x,aﬂx,t.n | cos 27 (en-g, g+ag, &, 0+ 3L)
4 - Tetragonal [ P P<3+ 1P 000+ 3P i pareo
1 — Tetragonal | Prio 1P <3+ 4P 0+ 3 | By eni | cos 2mn g, hak
4, — Tetragonal | B fP<i+3(—1) Fan.zk.o+§ (cos 27r}l) Fh—k.h-rk.o
4, — Tetragonal [ P P<i+1% Fan.zk.o"‘i (‘-I)LFn-k.Mk.o
— Hexagonal | Fager 2<t+3% Fw,sx,:&.o'*‘§Fa—x,a+2x,t.a+§Fa,x,t,o
3/m Hexagonal | Foger|?<t+13 Fyornti] ﬁﬂ—x,}ﬁzx,*,o | cos 2mag_g gisk 4.0
+3 | Fag, nrox,e01 | COS 2mag_x gak 20
6, —_ Hexagonal | Fager 2<i+3(—1)* Fm,zx.*.o‘*‘é (cos 27 §L) FH—K,H+2K.t.o
+4 (cos 2m }L) Fg z 4,0
6, -— Hexagonal | Fages |2S5+%Fm_gx,:,o+§ (cos 2 3L) Fy_ g pisg. x. 0
+4 (cos 2m §L) Fg g 40
65 — Hexagonal | ngu,|2€§+‘&(—l)LFm.zx.t,o'F§px—x,u+2x,t.o

+3 (=D Fp 4o
— a Monoclinic | Fhkliz<f+§(—l)npo,nk,o
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If the crystal possesses symmetry elements, more
restrictive relations can be derived, just as in the more
general case. For instance, suppose the crystal to have
a mirror plane, m, in the x, z plane. Then there is an
atom at x, —y, 2 for every atom at x, y, z. This gives
formula (14) the form

v
AFya=2 3 ne-tmthaitiz) cos 2 ky;.
=1

On applying Cauchy’s Inequality, one obtains
| 4By 17 <4 ( pX ”i) ( 2 n;(1+cos 27 k?/a))

or | 4P 2<t+34F, o0

in exact analogy with the fourth entry in Table 1.
Further investigation shows that every relation in
the table, as well as every other one derived similarly
from the symmetry elements of a crystal, has the same
form for 4F,,, as for F,,;. It is therefore unnecessary
to retain the superscript 4. It is only necessary to
note that the values of F, can be made larger by

dividing each one by the appropriate value of f, and
that the new, larger values provide much stronger
inequalities—indeed, strong enough to be useful in
practice.

The use of fin calculating F};,from F,,,,as in formula
(12), may be interpreted thus: The actual crystal con-
tains atoms whose electron clouds are rather spread

out; division of the amplitudes F,;= F},,,/Z by £ corre-
sponds to correcting the observed F’s to those of
a crystal in which all the electrons of each atom are
concentrated at its center. This correction can be made
exactly only if the atoms in a crystal are all spherical
and have the same f;/Z;. This is never really true, but
in practical cases it turns out to be a very good approxi-

mation. The use of f is 80 valuable in strengthening the
inequalities described here as to be almost essential.

In cases of crystals with large unit cells which contain
many atoms it may be possible to divide the F,;’s by
numbers which decrease much more Eapldly with in-

creasing (sin 6)/A than do the values of f. These numbers
should correspond to ‘unitary’ structure factors of such
atomic aggregates as can reasonably be assumed to be
present in the crystal and to have approximate spherical
symmetry. This procedure probably can be used only
if the resolution of the Fourier series representing the
crystal is insufficient to separate these aggregates into
their constituent atoms. Such lack of resolution is
quite usual in crystals with very large unit cells—the
proteins provide several examples. The inequalities for
these crystals can probably be considerably streng-
thened by such a procedure without seriously en-
dangering their accuracy.

17

Relations limiting the phases of odd orders

All the inequalities derived so far limit the phases of
only certain special Fourier coefficients. The inequality

for the center of inversion, for example, so far provides
limits on the signs of only the Fy, ,; »’s—those with
all indices even. One can, however, obtain information
on the phases of other coefficients.

First, consider a crystal with no symmetry. In this
case N
FW_: > me-2nithetkyytle)

=1

Two different F),,,’s may be added, or subtracted, to

N

= 3 ne itk vjils) fo—2milh—) 2+ (k—K)ys+ -1z 4 1},
=1

! (18)

Cauchy’s Inequality applied to this expression leads
to

| B £ Frpr |2
<2+2] Fh—h’, k-t 11| COB2m oty pe g p.  (19)
Further rearrangement brings one to the expression
[l Fhkll . |Fh'k’l’| 08 27 (ot — Owrer)
- | B, —K, k~F, z—z'l cos 27 (“h—h’, kK, ) |
<1=3(| B P+ | Brorer 9)- (20)

This can be used to limit the ranges of «,; and
Oy, k—r,i—r if the value of a,y is assumed. This is
allowed, since the choice of origin is arbitrary in an
asymmetric crystal.

An interesting special case of (20) arises by putting
h=—h, '=—k, I'=—1. Since oj3=—oy, and
| Bz | = | Fyie|, one obtains
|| Praa|? cos 2 (2epsy)

—| ch,zk,ztl 08 270ty g, 21| <1~ | B |2

(20")

It is always possible to choose the origin so as to make
o Vanish. Choosing the origin in this way, we have,
by simple rearrangements,

| P |2<3(1+] th, ok, 21| COS 2mtlap o 21)-
This inequality shows that, for any crystal,
| Far|?<} if | Fop o, ] =0

(207)

More useful expressions are obtained in case the
crystal possesses symmetry. For instance, the simple
case of a center of inversion leads to

! 2Fhklph'k’l' - (F’h+h', k+K, L+ + Fh—h’, k-K, l—l’) ]

<143 (Fos, o a1+ Pow, 2ie, 20) — (Pl + Frnr),  (21)
or
| 2B Brier— Brow, ke, ver+ Frw, i) |
<1+ By ke sr Foow, wore v — Pt Froer),  (22)
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depending on the choice of a;in Cauchy’s Inequality,
(15). Formulas (21) and (22) can be used to find the
signs of F’s that do not yield to the simpler inequali-
ties of Table 1, many of which can prove an £ to be
positive, but not the reverse. In such cases, (21) and
(22) can prove some of the /s to be negative.

Another very important use of (21) and (22) is in
limiting the signs of F,’s with &, k, I not all even.
This is done as follows: Suppose that the signs of the
FM,%_M’S have been found—from the inequalities in
Table 1 or from (21) and (22)—then choose 4, k, I and
k', k', U in (21) or (22) such that h+h', k+k', I+ 1 are
all even, but 4, k, [, b’, k', I’ are not. Then, in principle,
the signs of all the terms in (21) and (22), except those
of Fy; and Fp are known. If the sign of one of these
is assumed, that of the other follows. This knowledge
then allows the signs of other F),,’s to be found. This
procedure could lead to determinations of the signs
of all the F,,’s, except for a certain ambiguity in the
signs of those that have &, k and [ not all even, since
these signs depend on the assumption just mentioned.
This ambiguity is due to the eight possible choices of
origin in a crystal possessing a center of symmetry, for
between each two identical centers is another center
notidentical with the first kind. The structure can be
described in terms of a Fourier series about either
kind of center and the two series will have the same
Fyp, 01, 20's, but will have opposite signs for some other
F’s. It is interesting that this ambiguity in choice of
origin corresponds to an ambiguity in the signs of just
the proper sets of F’s,

The addition and subtraction of two F’s yields
extremely powerful inequalities when other symmetry
elements than the center are used. Examples of some
of these will be presented later in this paper.

Combinations of symmetry elements
New and important inequalities can be derived for
crystals having more than one symmetry element. For
instance, consider the simple case of a two-fold axis
and a mirror plane normal to it, such as occurs in the
space group C},— P2/m. The co-ordinates of the
general atomic position can be taken as

Y, 2 %, 4,2, T, Y 2z X7 2

Accordingly, the formula for £,,, is
IN
Fu=4 3 n;co8 27ky, cos 27 (ha;+1z;).  (23)
j=1

Cauchy’s Inequality applied to this expression can
yield two different results, depending on whether a; in
formula (15) is taken to be n} or nd cos 27 ky;. These two
choices of a; yield, respectively,

Fizzkzsi(l+Fo,2k,o+F2h,o,2t+th,zk,zt)
F§k1$i(l +F0.2Ic,0) (1+F2h,0,2l)'

(24)

and (25)

Formula (25) can also be written
Pra<iq + B 0, 0F Fonyo.+ Fo o0 Fon o ). (26)

Comparing (24) and (26), one sees that th_% o and
the product Fo, 2k_0.F2h o,21 Play analogous roles in
these two inequalities. These two numbers are not
equal, in general, and one or the other of these in-
equalities is the more powerful, depending on circum-
stances. Quite commonly it happens that such
formulas as (24) and (25) provide sign determinations
when those derived from a single symmetry element do
not. This can arise from one of the following situations:
(a) the signs of some of the terms of the right sides of
(24) and (25) are already known; or (b) one of Fo’ ok, 0
or an_ o, 2t 18 zero or small, the other then being subject
to a very powerful inequality in (25), equivalent to
dividing by two the right-hand side of the inequality
for one symmetry element alone (cf. formulas (9) and
(17)).

If Cauchy’s Inequality is applied to the sums and
differences of two F,,’s belonging to a crystal of
symmetry C},— P2/m, the following inequality may
be obtained (for the case of a,=n})

(Bt B <22 +Fo, 2k,0+F2h, 0, 21+F2h, 2k, 21
+ Fo, 2k, 0t th', 0 2w+ For or, 21
+2 [Fh-h', k—w—r T+ Fh—-h', Rtk 11

+ Fh+h', kb, T Fh+h', eerperlle (27)

This relation can be used as a tool more powerful than
(24) or (25) for finding the negative f’s and the F's
with hkl not all even. Its increased power arises from
the use in its derivation of more symmetry elements
than the center alone.

Each space-group symmetry can be made to yield
a set of characteristic inequalities, and they become
more powerful as the number of symmetry elements
increases. In illustration of this increase in power, we
present some of the inequalities which can be derived
for the space group Dji — Pnnm. This space group pro-
vides the general atomic positions:

Y, 2 T, §, 2, }+v, %_y’%_z; -2, 3+y, 3—%;
z, 37, z; x, Y, z; %'—Z, %+y’%+2; %+x7%—y:%+z

Accordingly, the unitary structure factor for the
space group is
: W
Fou=8 3, n;cos 2rha; cos 2rky, cos 2nlz,,
i=1
if h+k+1is even,

N
or  Fyy=—83 n,sin 2nkx;sin 2rky, cos 2mlz;,
j=1

if h+k+1is odd.
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Four different inequalities can then be derived from
these formulas, depending on the choice of a in
(15). These are listed below:

Fra<3{l +F0,0,21+th,zk,0+F2h,2k,2l+(— 1)r+iett
X (th,0,0+E),zk,o+F2h,0,21+F0,2k,2l)}’ (28)
p]%klg {1 +Fo,o,2z}{l +F2k ox, 0+ (— 1)pti+l

X (th,o,o +E),2k o (29)
Py <1+ (=DMt By o H {1+ Fo 0,0+ (—1)M**

 (Byn, 0,0t Fon 0.2} (30)
PR <1+ (=1)PEe By, o M1+ By o+ (= 1)+

X (Fo,zlc,o'*‘po, ok, 21)}- (31)

In addition to these, there are a number of valuable
‘sum and difference’ relations for Prnnm; among them
the following:

(Pant P2 <32+ 5, s+ B 0,20+ Fon aie,0
+ Fon o 0+ Fon, o+ Fop e, 00
+ (—1)r et (th,o,o'f'Fo,u,o"‘th,o,zz + By, o1,21)
(= 1) HEHY (th', o0t By o0 +F2h’, o2t By on,2)
+2[F hh, ke, 1t T F het b, ek, 1t T F kI, LAY
+F, e, ke, e (= DR (Brin, kmie 10

+ Fh+h’, k-w,1-vt+ F —n ki, LT Fh—h’, kst 1)1} 39
(

(Pt Fra)? <32+ 2Fo,o,zz+F2h'.zk'.o+th, 2k, 0
+F2h,2k.21+F2h’, 2k, 21
(= 1) By 00 + By or 0+ Fon 0,0+ Fo or, )
+(— 1)hi+k'+l(F2h',o.o+F0, 2k’,0+F2h’, 0,21+F0,2k’,2l)
+2[F, —h’,k—k’,0+Fh+h’,k+k’,0+Fh+h', K+, 2L
+ Py, e,
+(—-1) ”+k’+t(Fh—h', k+k’,0+Fh+h', k—k’,0
+ Fh—h', ker,2tt Fh—{—h’, wxoa)lh  (33)
(Pt Fri)?<3{1 +E),o,2z}{2 +F2h,2k,0+—p2h’,2k’,0
+ (= 1)+t (th,o,o"‘po,zk,o) + (= L)rers
X (F2h’,0,0+F0,2k',0)
+2 [Fh+h’, k+k’,0+F _w, k0 (= D)FHEH

x (F —h’,k+k’,0+Fh+h’,k—k’,0)]}- (34)

From these can be derived others by giving special
values to the indices. For instance, by putting /=0 in
(33) or (34), one obtains:

(Frrot Fropo)?<3{2 +F2h,2k,0+F2h’,2k’,0+ (—1)r+k
X (Fyn0,0+ Fo,o,0) + (= 1) ¥+ (For,0,0+ Fo 21 o)
+2[F, —w, kx0T ) S YL
x (B, _w, Ic+k’,0+Fh+h’, k—w,0) ]} (35)

Also, by letting h=~’, k=k', =1’ in (32) and (34), one
obtains, respectively, (28) and (29).

The space group Pram can lead to an immense
number of inequalities—the authors have derived
about thirty—which differ in the special values of
h,k, 1 and B', k', I used in their derivation, and in
the way in which a; is chosen in (15). In addition
to these, the inequalities derived from any subgroup
of Pnnm are also applicable to crystals with this space
group. Thus it seems out of place to attempt an ex-
haustive list of inequalities for even this one space
group in the present paper. For any particular space
group, a set of inequalities can be derived as needed.
Different members of this set are useful in sign (or
phase) determinations for different PB,,.;’s. The process
is laborious, but not difficult; its essentials have been
outlined in the early parts of this paper.

Application of the inequalities
Gillis (1948) has presented a beautiful example of
the usefulness of formulas (8) and (22) in finding the
signs of the F,y’s for oxalic acid dihydrate, using the
data of Robertson & Woodward (1936). This work
illustrates in detail the process of finding the signs of
F’sin an actual case. The authors of this paper are
applying the inequalities in the course of an investi-
gation into the structure of crystalline dekaborane,
B, H,,. It is hoped to publish the results of this work
in the near future, at which time the details of the sign

determinations involved will be presented.
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